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In this paper we have obtained the general analytical equations corresponding to the
response of complicated charge transfer processes with coupled homogeneous chemical
reactions in cyclic chronopotentiometry by applying the superposition principle. The analysis
of different cycles of this response can be used to obtain accurate and contrasted values of
kinetic parameters in each complex reaction scheme analysed. These parameters are of great
interest for the chemist and the biochemist. These equations are also applicable to cyclic
derivative chronopotentiometry which is a very useful method since the response is obtained
with peaks in a similar way to cyclic voltammetry but its mathematical treatment is simpler.

0. Introduction

As has been pointed out in previous papers, electrochemical techniques in which
the electrical perturbation (potential or current) is applied more than once are of great
interest both analytically and kinetically [1,5,10].

When several potential steps are successively applied without balance in the
interphase electrode solution being restored, the superposition principle can only be
applied in the case of reversible processes and the analytical expressions for a slow
charge transfer reaction have only been deduced for two and three potential steps [15].
On the other hand, in the case where several current steps with alternating sign are
used successively, we have recently demonstrated that the superposition principle can
be applied for electrodes of different geometry and is independent of the reversibility of
the charge transfer process [11]. We have also found the general solution corresponding
to a slow charge transfer reaction in planar, spherical and tubular electrodes in cyclic
chronopotentiometry. The use of this technique presents great advantages both in the
normal and also in the derivative mode, as has been shown recently in the literature
[2,8,9].

With this in mind, the main aim of this paper is to propose a theory corresponding
to the study of electrode processes with homogeneous chemical reactions (C) coupled
to the heterogeneous electrochemical charge transfer step (E) in cyclic chronopoten-
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tiometry. We will study the response of CEC, CE, EC, E and catalytic mechanisms in
this technique at spherical electrodes such as the dropping mercury electrode (DME)
and the static mercury drop electrode (SMDE), as well as at electrodes with planar
geometry. The study of the electrochemical behaviour of these mechanisms is of great
interest for the chemist and the biochemist.

The equations deduced in this paper may be used directly in cyclic chronopo-
tentiometry or in cyclic derivative chronopotentiometry. In the latter the inverse of
that derivative is found from the response obtained, either analytically or numerically
with respect to time. This technique is of great interest since responses are obtained
with peaks that are barely affected by the charge current. The information obtained is
similar to that of cyclic voltammetry but the mathematical treatment is simpler [2].

The mathematical resolution of the five above mentioned mechanisms in cyclic
chronopotentiometry has been realised by demonstrating that the superposition prin-
ciple can be applied in all these cases in such a way that the solutions obtained for
these complex electrode process can be expressed in a general form for any number of
applied current steps [11]. Moreover, the equations obtained here are easily applied to
obtain kinetic and thermodynamic parameters and, therefore, permit a complete char-
acterisation of each electrode process. To this extent, we include as an example of
applications several figures that show the different behaviours of these reaction mech-
anisms, both in chronopotentiometry and in derivative chronopotentiometry, when two
current steps are applied.

1. Theory

1.1. General treatment

We will simultaneously analyse the following two reaction schemes:

A
//

k1

O + ne−oo

k2

//
kf

Roo

kb

//
k3

Z CEC mechanism,oo

k4

(I)

R
//

k1

O + ne−oo

k2

//
kf

Roo

kb

//
k1

O catalytic mechanism.oo

k2

(II)

Scheme I corresponds to a CEC (chemical–electrochemical–chemical) mechanism
in which both species participating in the electrode process, the oxidised O and the
reduced R, are chemically coupled to different species.

The obtention of the general equations corresponding to the response of this
scheme is of great interest because from the general expressions deduced for the CEC
mechanism it is easy to deduce those corresponding to other interesting and simpler
reaction schemes such as the EC mechanism given by the following scheme:

O + ne−
//

kf

Roo

kb

//
k3

Z EC mechanism,oo

k4

(I(a))



A. Molina et al. / Application of the superposition principle. Part III 279

and also the CE mechanism which can be written as

A
//

k1

O + ne−oo

k2

//
kf

R CE mechanism.oo

kb

(I(b))

Moreover, a catalytic electrode process, represented by scheme II, if both
species R and O participating in the electrode process are initially present in the
solution, can also be considered as a particular case of the CEC mechanism as will be
seen below.

We will consider a dynamic electrode such as the dropping mercury elec-
trode (DME) and we will analyse the response of CEC processes in cyclic chronopo-
tentiometry. This technique, as was indicated in [11], consists of applying successive
and alternating sign current steps, in the following way:

I1, 0 6 t1 6 T1,
−I2, 0 6 t2 6 T2,
I3, 0 6 t3 6 T3,
...

(−1)j+1Ij , 0 6 tj 6 Tj ,
...

(−1)k+1Ik, 0 6 tk 6 Tk,

(III)

with Ij (1 6 j 6 k) being the absolute value of each current step applied, tj being
the time during which an Ij current is applied and Tj is the time in which the change
in sign is produced with Tj 6 τj , with τj being the transition time corresponding to
any reduction of O species (forward transition times, τ1, τ3, τ5, . . .) or to any oxidation
of R species (reverse transition times, τ2, τ4, τ6, . . .). When τj is reached, the total
time elapsed is given by

t = T1 + T2 + · · ·+ Tj−1 + τj. (1)

For the CEC mechanism (scheme I), when the first current step I1 is applied, the
differential equations to be solved are

δ̂Ac
1
A = −k1c

1
A + k2c

1
O,

δ̂Oc
1
O = k1c

1
A − k2c

1
O,

δ̂Rc
1
R = −k3c

1
R + k4c

1
Z ,

δ̂Zc
1
Z = k3c

1
R − k4c

1
Z

(2)

with δ̂i (i = A, O, R or Z) being the operator (see notation)

δ̂i =
∂

∂t
−Di

[
∂2

∂r2 +
2
r

∂

∂r

]
+

ζ3

3r2

∂

∂r
. (3)



280 A. Molina et al. / Application of the superposition principle. Part III

Note that the operator δ̂i given by equation (3) is linear and equations system (2)
is also linear.

Due to the fact that the surface of a dropping mercury electrode varies with time,
being null at time zero, the first current step I1 must be used after a blank period, tbp, in
order to avoid serious problems [14]. This fact complicates the mathematical treatment
of this problem and, in the case of electrodes of constant area, this blank period has no
physical sense. Nevertheless, in this paper we have solved the problem for the most
complicated case of a dropping mercury electrode since, from the equations deduced
for this electrode, by using the model of a sphere whose area increases with time
(equation (3)) [7], the equations corresponding to others electrode models may be
obtained through simple substitutions (see section 1.3).

The boundary value problem in this case is given by (see notation){
t1 = 0, r > r0,

t1 > 0, r →∞,
c1
A = c∗A, c1

O = c∗O, c1
R = c∗R, c1

Z = c∗Z , (4)

t1 > 0, r = r0,

DO

(
∂c1
O

∂r

)
r=r0

= −DR

(
∂c1
R

∂r

)
r=r0

=
I1

nFA(ts)
, (5)

DA

(
∂c1
A

∂r

)
r=r0

= DZ

(
∂c1
Z

∂r

)
r=r0

= 0 (6)

with {
A(ts) = A0t

2/3
s ,

ts = tbp + t1,
(7)

where tbp is the blank period used for this electrode, t1 is the time during which the
first current step I1 is applied and A0 is a constant whose value for the dropping
mercury electrode is given in notation. Di and c∗i (i = A, O, R or Z) are the diffusion
coefficient and the initial concentration of species i, respectively.

By introducing the variables
ε1 = c1

A + c1
O,

∆1 = c1
R + c1

Z ,

φ1 = (c1
A −KAOc

1
O) e(k1+k2)t1 ,

Ω1 = (c1
R −KRZc

1
Z) e(k3+k4)t1 ,

(8)

with KAO and KRZ being the equilibrium constants of the first and the second chemical
reactions, respectively, and which are given by{

KAO = k2/k1 = c∗A/c
∗
O,

KRZ = k4/k3 = c∗R/c
∗
Z ,

(9)
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and with the assumption

DA = DO 6= DR = DZ (10)

the differential equations system (2) and the boundary value problem (equations (4)–
(6)) are transformed into

δ̂Aε
1 = δ̂O∆1 = δ̂Rφ

1 = δ̂ZΩ1 = 0, (11)

{
t1 = 0, r > r0,

t1 > 0, r→∞,


φ1 = Ω1 = 0,

ε1 = c∗A + c∗O,

∆1 = c∗R + c∗Z ,

(12)

t1 > 0, r = r0,

DO

(
∂ε1

∂r

)
r=r0

= −DR

(
∂∆1

∂r

)
r=r0

=
I1

nFA(ts)
, (13)

(
∂φ1

∂r

)
r=r0

= −KAO

(
∂ε1

∂r

)
r=r0

e(k1+k2)t1 , (14)

(
∂Ω1

∂r

)
r=r0

=

(
∂∆1

∂r

)
r=r0

e(k3+k4)t1 . (15)

The solution of this problem appears in [13] for a complex current time function,
and for a current step I1 it can be easily deduced from this reference by making u = 0
and ω = 0. In this way, for the concentrations of species O and R in the electrode
surface c1

O(r0, t) and c1
R(r0, t) we deduce the following expressions:

c1
O(r0, t)
c∗A + c∗O

=
1

1 +KAO

{
1−Ns

t
1/2
1

t
2/3
s

[
SO(t1) +KAOXO(t1)

]}
, (16)

c1
R(r0, t)
c∗R + c∗Z

=
1

1 +KRZ

{
KRZµCEC + γNs

t
1/2
1

t
2/3
s

[
KRZSR(t1) +XR(t1)

]}
, (17)

where

Ns =
2I1

nFA0D
1/2
O (c∗A + c∗O)

, (18)

γ =
√
DO/DR, (19)

µCEC =
c∗R + c∗Z
c∗A + c∗O

, (20)

ts is given by equation (7) and Si(t1) and Xi(t1) (with i = O or R) are functional
series which are given in the appendix.
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When the second current step −I2 is applied, as this problem is linear (see
equations (2) and (3)), we assume that the solutions of the equations system (2) are
now c2

A(r, t), c2
O(r, t), c2

R(r, t) and c2
Z(r, t), which can be written

c2
A(r, t) = c1

A(r, t) + c̃ 2
A(r, t),

c2
O(r, t) = c1

O(r, t) + c̃ 2
O(r, t),

c2
R(r, t) = c1

R(r, t) + c̃ 2
R(r, t),

c2
Z(r, t) = c1

Z(r, t) + c̃ 2
Z(r, t).

(21)

Therefore, if we define the new variables
ε2 = c2

A + c2
O = ε1 + ε̃ 2,

∆2 = c2
R + c2

Z = ∆1 + ∆̃2,

φ2 = (c2
A −KAOc

2
O) e(k1+k2)t = φ1 + φ̃2,

Ω2 = (c2
R −KRZc

2
Z) e(k3+k4)t = Ω1 + Ω̃2,

(22)

where ε1, ∆1, φ1 and Ω1 have already been obtained for the previous step, the bound-
ary value problem now has the following, simplified form in terms only of the new
unknown functions ε̃ 2, ∆̃2, φ̃2 and Ω̃2:{

t2 = 0, r > r0,

t2 > 0, r →∞,
ε̃ 2 = ∆̃2 = φ̃2 = Ω̃2 = 0, (23)

t2 > 0, r = r0,

DO

(
∂ε̃ 2

∂r

)
r=r0

=−DR

(
∂∆̃2

∂r

)
r=r0

, (24)

DO

(
∂ε̃ 2

∂r

)
r=r0

=− (I1 + I2)
nFA(ts)

, (25)

(
∂φ̃2

∂r

)
r=r0

=−KAO

(
∂ε̃ 2

∂r

)
r=r0

e(k1+k2)t, (26)

(
∂Ω̃2

∂r

)
r=r0

=

(
∂∆̃2

∂r

)
r=r0

e(k3+k4)t (27)

with

ts = tbp + T1 + t2. (28)



A. Molina et al. / Application of the superposition principle. Part III 283

By substituting (21) in (22), and through a similar procedure for the resolution of this
problem as that in [13] for the first step, the following expressions for c2

O(r, t) and
c2
R(r, t) are deduced:

c2
O(r0, t)
c∗A + c∗O

=
1

1 +KAO

{
1− Ns

t
2/3
s

[
(T1 + t2)1/2{SO(T1 + t2) +KAOXO(T1 + t2)

}
− I2 + I1

I1
t
1/2
2

{
SO(t2) +KAOXO(t2)

}]}
, (29)

c2
R(r0, t)
c∗R + c∗Z

=
1

1 +KRZ

{
KRZµCEC +

γNs

t
2/3
s

[
(T1 + t2)1/2{KRZSR(T1 + t2)

+XR(T1 + t2)
}
− I2 + I1

I1
t
1/2
2

{
KRZSR(t2) +XR(t2)

}]}
. (30)

Equations (29) and (30) are of great importance since they correspond to the
surface concentrations for a CEC mechanism in cyclic chronopotentiometry with two
current steps. These expressions have not previously been obtained in the literature.
The particular case of the cyclic chronopotentiometry with two current steps leads to
the technique known as current reversal chronopotentiometry. This technique is of
great interest for the study of reaction mechanisms. To date, it has only been applied
to planar electrodes because their treatment is less complicated from the theoretical
point of view [3,4]. Nevertheless, from a practical viewpoint, this technique offers
far more advantages when applied to spherical electrodes like the static mercury drop
electrode (SMDE) and the dropping mercury electrode (DME).

The mathematical treatment used for the first and the second current steps can
be easily generalised by induction for any number of current steps. Indeed, for the jth
step the solutions to the differential equations system can be written in the following
way: {

αj = αj−1 + α̃j ,
αj−1 = α1 +

∑j−1
m=2 α̃

m (31)

with αj = εj , ∆j , φj or Ωj , which fulfil

δ̂Aε
j = δ̂O∆j = δ̂Rφ

j = δ̂ZΩj = 0. (32)

Therefore the generalised boundary value problem now has the form{
tj = 0, r > r0,

tj > 0, r →∞,
ε̃ j = ∆̃j = φ̃j = Ω̃j = 0, (33)

tj > 0, r = r0,

DO

(
∂ε̃ j

∂r

)
r=r0

=−DR

(
∂∆̃j

∂r

)
r=r0

, (34)
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DO

(
∂ε̃ j

∂r

)
r=r0

= (−1)j+1 (Ij + Ij−1)
nFA(ts)

, (35)(
∂φ̃j

∂r

)
r=r0

=−KAO

(
∂ε̃ j

∂r

)
r=r0

e(k1+k2)t, (36)(
∂Ω̃j

∂r

)
r=r0

=

(
∂∆̃j

∂r

)
r=r0

e(k3+k4)t (37)

with t given by equation (1) and ts = tbp + t.
Conditions (23)–(27) for j = 2 (current reversal chronopotentiometry) have a

general form identical to the initial and surface conditions (33)–(37) for any j > 2
(cyclic chronopotentiometry). Therefore, it is evident that we can write (see equa-
tions (29) and (30))

c jO(r0, t)
c∗A + c∗O

=
1

1 +KAO

{
1− Ns

t
2/3
s

×
j∑

n=1

(−1)n+1(tn,j)
1/2 In + In−1

I1

{
SO(tn,j) +KAOXO(tn,j)

}}
, (38)

c jR(r0, t)
c∗R + c∗Z

=
1

1 +KRZ

{
KRZµCEC +

γNs

t
2/3
s

×
j∑

n=1

(−1)n+1(tn,j)
1/2 In + In−1

I1

{
KRZSR(tn,j) +XR(tn,j)

}}
(39)

with

I0 = 0, (40){
tn,j =

∑j−1
m=n Tm + tj ,

tj,j = tj .
(41)

Equations (38) and (39) show that the surface concentrations of species O and R
(and also species A and Z which are not shown for the sake of simplicity), can be
expressed as a sum of j terms of the same general form due to the fact that the
superposition principle is fulfilled in these conditions.

1.2. Other mechanisms

Equations (29) and (30) for current reversal chronopotentiometry and (38)
and (39) for cyclic chronopotentiometry can be transformed into those correspond-
ing to EC, CE (schemes I(a) and I(b), respectively) and E processes by making the
following simple substitutions:
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1.2.1. EC mechanism
In this case, condition KAO = 0 (i.e., c∗A = 0) must be fulfilled in order to obtain

the response to an EC mechanism. Scheme I becomes scheme I(a), and c jO(r0, t) and
c jR(r0, t) take the simpler form

c jO(r0, t)
c∗O

= 1− Ns

t
2/3
s

j∑
n=1

(−1)n+1(tn,j)
1/2 In + In−1

I1
SO(tn,j), (42)

c jR(r0, t)
c∗O

=
1

1 +KRZ

{
KRZ

c∗R + c∗Z
c∗O

+
γNs

t
2/3
s

×
j∑

n=1

(−1)n+1(tn,j)
1/2 In + In−1

I1

{
KRZSR(tn,j) +XR(tn,j)

}}
. (43)

1.2.2. CE mechanism
The equations corresponding to this process are obtained by making KRZ = ∞

(i.e., c∗Z = 0) in equations (38) and (39). Thus, scheme I becomes scheme I(b), and
cj(r0, t) and c jR(r0, t) now take the form

c jO(r0, t)
c∗A + c∗O

=
1

1 +KAO

{
1− Ns

t
2/3
s

×
j∑

n=1

(−1)n+1(tn,j)
1/2 In + In−1

I1

{
SO(tn,j) +KAOXO(tn,j)

}}
, (44)

c jR(r0, t)
c∗A + c∗O

=
c∗R

c∗A + c∗O
+
γNs

t
2/3
s

j∑
n=1

(−1)n+1(tn,j)
1/2 In + In−1

I1
SR(tn,j). (45)

1.2.3. E mechanism
In this case, KAO = 0 and KRZ = ∞ must be simultaneously fulfilled, and

equations (38) and (39) for cj(r0, t) and c jR(r0, t) are transformed into equations (22)
and (23) in [11].

1.2.4. Catalytic mechanism (scheme II)
In this case, the deduction is simpler than in the CEC mechanism due to the fact

that the solutions corresponding to any current step (−1)j+1Ij can fulfil

c jO(r, t) + c jR(r, t) = c∗O + c∗R = cte (46)

for any value of j = 1, 2, 3, . . . , r > r0 and t.
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In these conditions, equations (38) and (39) corresponding to a CEC process are
transformed into that corresponding to a catalytic mechanism by makingγ = 1,

εj = ∆j = c∗O + c∗R,
KAO = KRZ = K = c∗R/c

∗
O,

(47)

so we obtain

c jO(r0, t)
c∗O + c∗R

=
1

1 +K

{
1− Ns

t
2/3
s

(1 +K)

×
j∑

n=1

(−1)n+1(tn,j)
1/2 In + In−1

I1
XO(tn,j)

}
, (48)

c jR(r0, t)
c∗O + c∗R

=
1

1 +K

{
K +

Ns

t
2/3
s

(1 +K)

×
j∑

n=1

(−1)n+1(tn,j)
1/2 In + In−1

I1
XR(tn,j)

}
. (49)

1.3. Other electrode models

1.3.1. Expanding plane electrode model for a DME
In this case, the diffusion operator that appears in the differential equations system

that describes the mass transport to the electrode surface is given by

δ̂i =
∂

∂t
−Di

∂2

∂x2 −
2x
3t

∂

∂x
. (50)

The equations for this electrode model are obtained by making ξn,j
i = 0 (see

appendix) in series Si and Xi (with i = O or R) which appear in the expressions of
the surface concentrations of species O and R, c jO(r0, t) and c jR(r0, t), throughout this
paper.

1.3.2. Static sphere electrode model for an SMDE
In this case, the diffusion operator is given by

δ̂i =
∂

∂t
−Di

[
∂2

∂r2 +
2
r

∂

∂r

]
. (51)

We can obtain the expressions for a static mercury drop electrode (SMDE) of
constant area A = A0t

2/3
bp by making tbp � 1 in all expressions of cj(r0, t) and c jR(r0, t)

(see equations (A.16)–(A.19)).
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1.3.3. Static plane electrode model
For this electrode model, the diffusion operator is given by

δ̂i =
∂

∂t
−Di

∂2

∂x2 . (52)

The solutions corresponding to a static plane electrode are obtained by making
both tbp � 1 and ξn,j

i = 0 (with i = O or R) in the expressions of cjO(r0, t) and
c jR(r0, t) (see equations (A.23) and (A.24)). In this case, from these substitutions the
responses obtained for an EC and catalytic mechanisms are identical to those deduced
by Herman and Bard [6].

1.4. Transition times

In order to obtain the transition time corresponding to species O and R in the
different steps, we make c jO(r0, τj) = 0 in equation (38) when j = 1, 3, 5, . . ., and
c jR(r0, τj) = 0 in equation (39) when j = 2, 4, 6, . . . .

1.5. Potential time response

The potential time response corresponding to any of the above studied mech-
anisms, when the jth current step is applied, can be easily deduced by substituting
the expressions of the surface concentrations of the oxidized and the reduced species,
c jO(r0, t) and c jR(r0, t), for the jth current step (equations (38) and (39), respectively)
in the Butler–Volmer equation, in the following way:

Ij
nFA(ts)k0

s
eαη(t) = (−1)j+1[c jO(r0, t)− eη(t)c jR(r0, t)

]
(53)

with

η(t) =
nF

RT

(
E(t)−E0), (54)

where k0
s is the apparent heterogeneous rate constant of charge transfer at E(t) = E0,

with E0 being the formal standard potential of the electrode reaction.

2. Some applications

In figure 1 we have plotted the different potential time responses obtained when
two current steps, I1 and I2 = −I1, are applied to a static spherical electrode in simi-
lar conditions for all the mechanisms analysed in this paper (equations (38) and (39),
(42) and (43) and (44) and (45) for the CEC, EC and CE mechanisms, respectively,
and (48) and (49) for the catalytic mechanism). As can be observed in this figure,
the CEC and CE mechanisms have an identical transition time τ1 corresponding to
the first reduction. However, the reoxidation transition times of both processes, τ2,
are not equal. Moreover, we can also observe that the first reduction transition time



288 A. Molina et al. / Application of the superposition principle. Part III

Figure 1. Potential time curves in current reversal chronopotentiometry (j = 2) at a static mercury drop
electrode (equation (53)). Ns = 2 s−1/2, r0 = 0.06 cm, γ = 1, T = 298 K, n = 1, DO = 10−5 cm2 s−1,
I2/I1 = 1, ks = 10−3 cm s−1. The values of the rate and equilibrium constants are: CEC (—) KAO =
KRZ = 0.5, k1 + k2 = k3 + k4 = 2 s−1; CE (– – –) KAO = 0.5, k1 + k2 = 2 s−1; EC (· · ·) KRZ = 0.5,

k3 + k4 = 2 s−1; catalytic (–··–··) K = 0.5, k1 + k2 = 2 s−1.

corresponding to an EC process is greater than in the case of the CE and CEC mecha-
nisms. This fact is in agreement with the schemes of the mechanisms CEC, CE and EC
(see schemes I, I(a) and I(b)) since in the EC mechanism no homogeneous chemical
reaction competes with the reduction of species O and, therefore, the concentration
of the latter on the electrode surface is always greater for an EC mechanism than for
the CEC and the CE mechanisms.

In the case of a catalytic process, for the values of the rate constant of the
chemical step analysed in figure 1 (k1 + k2 = 2 s−1), transition time τ1 is much
longer than that corresponding to the other processes. This fact is also in agreement
with the very nature of the mechanism (see scheme II), in which species O, which
is electrochemically consumed on the electrode surface in order to give R, is then
regenerated through a homogeneous chemical reaction.

Figure 2 shows the variation of (dE/dt)−1 vs. E −E0 (derivative chronopoten-
tiometry) obtained from the data in figure 1. As can be observed, clearly distinguished
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Figure 2. Cyclic derivative chronopotentiograms corresponding to CEC (—), CE (– – –), EC (· · ·) and
catalytic (–··–··) mechanisms at a static mercury drop electrode. Other conditions as in figure 1.

peaks are obtained with this technique, as we have mentioned in the introduction
to this paper. Their height and situation is characteristic for a determined electrode
process [2,8,9].

Figures 3 and 4 are an example of application of cyclic chronopotentiometry with
j = 2 (current reversal chronopotentiometry) in order to determine the rate constants
corresponding to the chemical step in an EC mechanism (see scheme I(a)).

In these figures we have plotted values of ((τ2 + T1)/τ2)1/2 or τ2/T1 vs. (k3 +
k4)T1, respectively, for a plane electrode, where T1 is the time in which the sign of the
applied current I1 is reversed to a value −I2 (I2/I1 = 1 in this case) with T1 6 τ1,
and τ2 is the transition time corresponding to the second current step (i.e., to the first
oxidation of species R), which varies when T1 changes according to the following
equations: (

τ2 + T1

τ2

)1/2

=
(1 + (I2/I1))[KRZ/

√
π +XPL

R (τ2)]
KRZ/

√
π +XPL

R (T1 + τ2)
, (55)
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Figure 3. Working curves deduced from current reversal chronopotentiograms in a plane electrode at
different values of time in which the current is reversed for an EC mechanism (equation (55)). I2/I1 = 1.

The values of KRZ are on the curves.

τ2

T1
=

{([
1 +

I2

I1

(
2 +

I2

I1

)][
KRZ/

√
π +XPL

R (τ2)

KRZ/
√
π +XPL

R (T1 + τ2)

])2

− 1

}−1

. (56)

These equations can be obtained by making c2
R(r0, τ2 + T1) = 0 in equation (43)

with j = 2, and (c∗R + c∗Z) = 0 for the particular case of a plane electrode (see
equations (A.23) and (A.24) of the appendix).

The curves shown in figures 3 and 4 can be used by the experimentalist as
working curves to determine, from measurements of τ2 and fixed T1, the values of
(k3 + k4) in s−1 by proceeding in the following way:

First, determine the value of the relation ((τ2 +T1)/τ2)1/2 either using figure 3 or
τ2/T1 in figure 4 and then, once the equilibrium constant KRZ is known, the value of
(k3 + k4) in s−1 can be immediately determined as the abscissa corresponding to the
value of the previous time ratios in the appropriate working curve. The curves in fig-
ure 3 are suitable for values of KRZ < 0.1 and those in figure 4 for values of KRZ > 0.1.
It should be noted that in this last figure, more than one measurement of τ2/T1 is neces-
sary to determine (k3+k4) when the corresponding working curve presents a minimum.
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Figure 4. Working curves deduced from current reversal chronopotentiograms in a plane electrode at dif-
ferent values of time in which the current is reversed for an EC mechanism (equation (56)). I2/I1 = 0.2.

The values of KRZ are on the curves.

Notation and definitions

c ji (r, ts), concentration profiles of the i species (with i = A, O, R or Z) for
the jth current step;

kf and kb, rate constants of forward (reduction) and backward (oxidation)
processes;

k0
s , apparent heterogeneous rate constant of charge transfer at E0;
Ij , absolute value of the jth current step applied;
Di, diffusion coefficient of species i (i = A, O, R or Z);
c∗i , bulk concentration of species i (i = A, O, R or Z);
k1, k2, rate constants of the preceding chemical reaction in a CEC process;

rate constants of the chemical reaction in a catalytic or in a CE
process;

k3, k4, rate constants of the subsequent chemical reaction in a CEC process;
rate constant of the chemical reaction in a EC process;



292 A. Molina et al. / Application of the superposition principle. Part III

KAO, equilibrium constant of the preceding chemical reaction in a CEC
process (k2/k1); equilibrium constant of the chemical reaction of a
CE process;

KRZ, equilibrium constant of the subsequent chemical reaction in a CEC
process (k4/k3); equilibrium constant of the chemical reaction of
an EC process;

K, equilibrium constant of a catalytic process;
r, distance from the centre of the spherical electrode;

r0,

{
electrode radius at time ts (= ζt

1/3
s ) for a DME,

constant electrode radius for a SMDE;
tbp, blank period used only for a dropping mercury electrode;
t, time elapsed between application of the first and the jth current

step (= T1 + · · · + Tj−1 + tj);
tj , time during which a j current step is applied (0 6 tj 6 Tj);
τj , transition time of the jth current step. If j is odd, τj corresponds

to a reduction process, whereas if j is even, τj corresponds to an
oxidation one;

Tj , time in which the change in sign of the current is produced, as well
as the absolute value;

ts, total time (= tbp + t);
ζ , electrode radius at ts = 1 s for a dropping mercury electrode (=

(3mHg/4πd)1/3);
mHg and d, rate of flow and density of mercury;
A(ts), time dependent electrode area of a dropping mercury electrode (=

A0t
2/3
s );

A0, (4π)2/3(3mHg/d)2/3 in s−2/3;
A, constant electrode area for static spherical or planar electrodes;
γ, =

√
DO/DR;

µCEC, = (c∗A + c∗O)/(c∗R + c∗Z);
E(t), time-dependent potential;
E0, formal standard potential of the electrode reaction;
Γ, Euler Gamma function.

Other definitions are conventional.

Appendix

The series SO and SR which appear in general equations (38) and (39) and in
most of the equations deduced in this paper are given by the expressions

SO(tn,j) =
J (0)(βn,j)√

π
− ξn,j

O J (1)(βn,j) +
(
ξn,j
O

)2J (2)(βn,j)√
π

(A.1)
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and

SR(tn,j) =
J (0)(βn,j)√

π
− ξn,j

R J (1)(βn,j) +
(
ξn,j
R

)2J (2)(βn,j)√
π

, (A.2)

where βn,j = (tn,j/(tbp + t1,j))1/3 for a dropping mercury electrode,
βn,j = 0 for a static drop mercury electrode

or a static plane electrode,
(A.3)

ξn,j
O =

2
√
DOtn,j

r0
, (A.4)

ξn,j
R =

2
√
DRtn,j

r0
(A.5)

with r0 = cte × t2/3
s for a dropping mercury electrode, and r0 is constant for a static

mercury drop electrode (see notation),

J (0)(βn,j) = 1 +
1
9
β3
n,j +

7
270

β6
n,j +

20
2835

β9
n,j + · · · , (A.6)

J (1)(βn,j) =
1
4

+
1
16
β3
n,j +

1
64
β6
n,j + · · · , (A.7)

J (2)(βn,j) =
1
6

+
1
15
β3
n,j + · · · . (A.8)

Equations (A.1) and (A.2) have been deduced by making m = −1/6 and k = 0
in equation (26) in [12]. In this reference we deduced the equations corresponding
to the application of a single perturbation to a DME. The equations deduced in this
reference correspond to a current which is a function of time and become those cor-
responding to a current step by making the previously indicated substitutions. As we
have demonstrated in this paper, by virtue of the superposition principle, the equations
deduced for a single applied current step are valid for any number of successive steps
in cyclic chronopotentiometry, by substituting the suitable time intervals in each case,
as equations (A.1) and (A.2) indicate.

Likewise, series XO and XR which appear in this paper are given by

XO(tn,j) = e−(k1+k2)tn,j
∑
z=0

(HO)z(tn,j)
((k1 + k2)tn,j)z

z!
, (A.9)

XR(tn,j) = e−(k3+k4)tn,j
∑
z=0

(HR)z(tn,j)
((k3 + k4)tn,j)z

z!
, (A.10)

where

(HO)z(tn,j) = J (0)
z (βn,j)− ξn,j

O J (1)
z (βn,j) +

(
ξn,j
O

)2
J (2)
z (βn,j), (A.11)

(HR)z(tn,j) = J (0)
z (βn,j)− ξn,j

R J (1)
z (βn,j) +

(
ξn,j
R

)2
J (2)
z (βn,j), (A.12)
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and

J (0)
z (βn,j) = 1 +

1
3(2z + 3)

β3
n,j +

7
18(2z + 3)(2z + 5)

β6
n,j

+
20

27(2z + 3)(2z + 5)(2z + 7)
β9
n,j + · · · , (A.13)

J (1)
z (βn,j) =

1
4(z + 1)

+
1

8(z + 1)(z + 2)
β3
n,j

+
1

32(z + 1)(z + 2)(z + 3)
β6
n,j + · · · , (A.14)

J (2)
z (βn,j) =

1
2(2z + 3)

+
1

(2z + 3)(2z + 5)
β3
n,j + · · · . (A.15)

The series SO, SR, XO and XR take a simpler form for electrodes whose areas
are not dependent on time as in the following cases.

Static spherical electrode

Equations (A.1)–(A.15) are transformed into those corresponding to a static spher-
ical electrode by making tbp � t. Indeed, in this case the variable on time area A(t)

becomes a constant area A ∼= A0t
2/3
bp . If we take that into account, this assumption

implies also that βn,j = 0, and equations (A.1) and (A.2) are simplified to

SSPH
O (tn,j) =

1√
π
− ξn,j

O

4
+
(
ξn,j
O

)2 1
6
√
π
− · · · , (A.16)

SSPH
R (tn,j) =

1√
π
− ξn,j

R

4
+
(
ξn,j
R

)2 1
6
√
π
− · · · , (A.17)

and

XSPH
O (tn,j) = e−(k1+k2)tn,j

∑
z=0

(
1

p2z+1
− ξn,j

O

4(z + 1)
+

(ξn,j
O )2

2(2z + 3)p2z+1
− · · ·

)
× ((k1 + k2)tn,j)z

z!
, (A.18)

XSPH
R (tn,j) = e−(k3+k4)tn,j

∑
z=0

(
1

p2z+1
− ξn,j

R

4(z + 1)
+

(ξn,j
R )2

2(2z + 3)p2z+1
− · · ·

)
× ((k3 + k4)tn,j)z

z!
, (A.19)

p2z+1 =
2Γ(1 + (2z + 1)/2)

Γ(1/2 + (2z + 1)/2)
. (A.20)
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Moreover, in all the expressions of the surface concentrations, c jO(r0, t) and

c jR(r0, t), we must change Ns/t
2/3
s for N ′s with

N ′s =
2I1

nFA
√
DO(c∗O + c∗A)

, (A.21)

where

A = A0t
2/3
bp = cte. (A.22)

Static planar electrode

To obtain the solutions corresponding to a planar electrode of area A, we must
make r0 →∞ (ξn,j

O = ξn,j
R = 0) in equations (A.16)–(A.19), so we deduce

SPL
O (tn,j) =SPL

R (tn,j) =
1√
π

, (A.23)

XPL
O (tn,j) =XPL

R (tn,j) = e−ktn,j
∑
z=0

(ktn,j)z

p2z+1z!
, (A.24)

where k = k1 +k2 for XO, and k = k3 +k4 for XR. In this case, we must also change
in all the expressions of surface concentrations c jO(r0, t) and c jR(r0, t), Ns/t

2/3
s for N ′s

given in equation (A.21).
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